All things data engineering & science newsletter #7

Standard

(if this newsletter was forwarded to you then you can subscribe here: https://insightextractor.com/)

The goal of this newsletter is to promote continuous learning for data science and engineering professionals. To achieve this goal, I’ll be sharing articles across various sources that I found interesting. The following 5 articles made the cut for today’s newsletter.

1. Why a data scientist is not a data engineer?

Good post on the difference between data engineer and data scientist and why you need both roles in a data team. I chuckled when one of the sections had explanations around why data engineering != spark since I completely agree that these roles should be boxed around just one or two tools! read the full post here

2. Correlation vs Causation:

1 picture = 1000 words!

No alternative text description for this image
Image Source
3. Best Practices from Facebook’s growth team:

Read Chamath Palihapitiya and Andy John’s response to this Quora question here

4. Simple mental model for handling for handling “big data” workloads
No alternative text description for this image
Image Source
5. Five things to do as a data scientist in firt 90 days that will have big impact.

Eric Weber gives 5 tips on what to do as a new data scientist to have a big impact. Read here

Thanks for reading! Now it’s your turn: Which article did you love the most and why?

What do you think? Leave a comment below.