There are many techniques to analyze data. In this post, we’re going to talk about two techniques that are critical for good data analysis! They are called “Benchmarking” and “Segmentation” techniques – Let’s talk a bit more about them:
1. Benchmarking
It means that when you analyze your numbers, you compare it against some point of reference. This would help you quickly add context to your analysis and help you assess if the number if good or bad. This is super important! it adds meaning to you data!
Let’s look at an example. CEO wants to see Revenue numbers for 2014 and an analyst is tasked to create this report. If you were the analyst, which report would you think resonated more w/ the CEO? Left or Right?
I hope the above example helped you understand the importance of providing context w/ your data.
Now, let’s briefly talk about where do you get the data for benchmark?
There are two main sources: 1) Internal & 2) External
The example that you saw above was using an Internal source as a benchmark.
An example of an external benchmark could be subscribing to Industry news/data so that you understand how your business is running compared to similar other businesses. If your business sees a huge spike in sales, you need to know if it’s just your business or if it’s an Industry wide phenomenon. For instance, in Q4 most e-commerce sites would see spike in their sales – they would be able to understand what’s driving it only if they analyze by looking at Industry data and realizing that it’s shopping season!
Now, let’s shift gears and talk about technique #2: Segmentation.
2. Segmentation
Segmentation means that you break your data into categories (a.k.a segments) for analysis. So why do want to do that? Looking at the data at aggregated level is certainly helpful and helps you figure out the direction for your analysis. The real magic & powerful insights are usually derived by analyzing the segments (or sub sets of data)
Let’s a look at an example.
Let’s say CEO of a company looks at profitability numbers. He sees $6.5M and it’s $1M greater than last years – so that’s great news, right? But does that mean everything is fine and there’s no scope of optimization? Well – that could only be found out if you segment your data. So he asks his analyst to look at the data for him. So analyst goes back and after some experimentation & interviews w/ business leaders, he find an interesting insight by segmenting data by customers & sales channel! He finds that even though the company is profitable – there is a huge opportunity to optimize profitability for customer segment #1 across all sales channel (especially channel #1 where there’s a $2M+ loss!) Here’s a visual:
I hope that helps to show that segmentation is a very important technique in data analysis!
Conclusion:
In this post, we saw segmentation & benchmark techniques that you can apply in your daily data analysis tasks!
Can you tell me how you did the profitability analysis? Thanks!
At a high level, we had to merge revenue data and allocate costs (at customer segments and sales channel level) to get to profitability numbers. Once we had a data model, we analyzed it using Excel & Tableau.