As a data scientist, are you dissatisfied with your career? Why?

Standard

As a data scientist, I am not dissatisfied. I love what I do!

But I might have gotten lucky since I got into this for the right reasons. I was looking for a role that had a little bit of both tech & business and so few years back, Business Intelligence and Data Analysis seemed like a great place to start. So I did that for a while. Then industry evolved and the analytics maturity of the companies that I worked also evolved and so worked on building predictive models and became what they now call “Data scientist”.

It doesn’t mean that data science is the right role for everyone.

One of my friends feels that it’s not that “technical” and doesn’t like this role. He is more than happy with data engineer role where he gets to build stuff and dive deeper into technologies.

One of my other friends doesn’t like that you don’t own business/product outcomes and prefers a product manager role (even though he has worked as a data analyst for a while now and is working on transitioning away).

So, just based on the empirical data that I have, data science might not be an ideal path for everyone.

Hope that helps!

VIEW QUESTION ON QUORA

How do you become a good data analyst?

Standard

This was asked on quora and here’s my reply:

You can become a great data analyst by continuously improving the analytics maturity of the company/start-up that you work for:

[Go to my blog for more context on the picture above]

If you create bunch of reports and help answer what happened— then try to help business users with why it happened. [Example: Instead of just sending website traffic info, add why the traffic spikes (up/downs) are happening]

If you are working on building bunch of models that answer why questions then try to help build predictive models next [Example: You have been working on a model that helped you answer why customers churned. Now built upon that and predict which customers will churn next]

If you do analytics and data science well and are already answering what, why, what’s next questions and you’re killing it! Then figure out how can you help business owners take action. Or make it easier than ever before to take actions on your data/recommendations.


Other answers for questions are directly/indirectly covered if you do this:

  1. You will have to pick the right tool for the job
  2. You will have to continuously keep learning (by taking online courses and/or you-tube)
  3. Don’t just be a data analyst, be a thought partner to business owners and if possible, transition into role that help you own business outcomes.

Hope that helps!

VIEW QUESTION ON QUORA

[Resource] 8 Methods to calculate CLV:

Standard

There are lot of ways to apply a CLV (customer lifetime value) model. But I hadn’t seen a single document that would summarize all of them — Until I saw this: http://srepho.github.io/CLV/CLV

If you are building a CLV model, one of first things that you might want to figure out is whether you have a contractual model or non-contractual model. And then figure out which methodology would work best for you. Here are 8 methods that were summarized in the link that I shared with you:

Contractual
  • Naive
  • Recency Frequency Monetary (RFM) Summaries
  • Markov Chains
  • Hazard Functions
  • Survival Regression
  • Supervised Machine Learning using Random Forest

Non-Contractual

  • Management Heuristics
  • Distribution Based Approaches

Hope that helps!

5 tests to validate the quality of your data:

Standard

Missing Data:

  • Descriptive statistics could be used to find missing data
  • Tools  like SQL/Excel/R can also be used to look for missing data
  • Some of the attributes of a field are missing: Like Postal Code in an address field

Non-standardized:

  • Check if all the values are standardized: Google, Google Inc & Alphabet might need to be standardized and categorized as Alphabet
  • Different Date formats used in the same field (MM/DD/YYYY and DD/MM/YYYY)

Incomplete:

  • Total size of data (# of rows/columns): Sometimes you may not have all the rows that you were expecting (for e.g. 100k rows for each of your 100k customers) and if that’s not the case then that tells us that we don’t complete dataset at hand

Erroneous:

  • Outlier: If someone;s age is 250 then that’s an outlier but also it’s an error somewhere in the data pipeline that needs to be fixed; outliers can be detected using creating quick data visualization
  • Data Type mismatch: If a text field is in a field where other entries are integer that’s also an error

Duplicates:

  • Duplicates can be introduced in the data e.g. same rows duplicated in the dataset so that needs to be de-duplicated

Hope that helps!

Paras Doshi

This post is sponsored by MockInterview.co, If you are looking for data science jobs, check out 75+ data science interview questions!

Journal of statistical software paper on tidying data:

Standard

Data cleaning takes up a lot of time during a data science process; it’s not necessarily a bad thing and time spent on cleaning data is worthwhile in most cases; To that end, I was researching some framework that might help me make this process a little bit faster. As a part of my research, I found the Journal of statistical software paper written by Hadley Wickham which had a really good framework to “tidy” data — which is part of data cleaning process.

Author does a great job of defining tidy data:

1. Each variable forms a column.
2. Each observation forms a row.
3. Each type of observational unit forms a table.

And then applying it to 5 examples:

 1. Column headers are values, not variable names.
2. Multiple variables are stored in one column.
3. Variables are stored in both rows and columns.
4. Multiple types of observational units are stored in the same table.
5. A single observational unit is stored in multiple tables

It also contains some sample R code; You can read the paper here: http://vita.had.co.nz/papers/tidy-data.pdf

As a student preparing for data anaylst & science roles, should I generalize vs specialize?

Standard

This question was posted on Springboard forum.

Here’s my answer:

It depends on your target industry & where they are in their life-cycle.

It has four stages: Startup, Growth, Maturity, Decline.

Industry lifecycle

Generalization is great in earlier stages. If you are targeting jobs at startups; generalize. You should know enough about lot of things.

T-shaped professionals are great for Growth stage. They specialize in something but still know enough about lot of things. E.g. Sr Growth/Marketing Analyst. Know enough about analytics & data science to be dangerous but specializes in marketing.

Specialization is great for mature industries. They know a lot about few things. E.g. Statisticians in an Insurance industry. They have made careers out of building risk models.

Any advice for moving into data science from business intelligence?

Standard

This was asked on Reddit: Any advice for moving into data science from business intelligence?

Here’s my answer:

I come from “Business Intelligence” background and currently work as Sr. Data Scientist. I found that you need two things to transition into data science:

Data Culture: A company where the data culture is such that managers/executives ask big questions that need a data science approach to solve it. If your end-consumers are still asking bunch of “what” questions then your company might NOT be ready for data science. But if your CEO comes to you and says “hey, I got the customer list with the info I asked for but can you help me understand which of these customers might churn next quarter?” — then you have a data science problem at hand. So, try to find companies that have this culture.

Skills: And you need to upgrade your skills to be able to solve data science problems. BI is focused too much on technology and automation and so may need to unlearn few things. For example: Automation is not always important since you might work on problems where a model is needed to predict just a couple of times. Trying to automate wouldn’t be optimal in that case. Also, BI relies heavily on tools but in Data science, you’ll need deeper domain knowledge & problem-solving approach along with technical skills.

Also, I personally moved from BI (as a consultant) -> Analytics (as Analytics Manager) -> Data science (Sr Data Scientist) and this has been super helpful for me. I recommend to transition into Analytics first and then eventually breaking into data science.

Hope that helps!

VIEW THREAD ON REDDIT