Springboard Data Analytics for Business Office Hours

Standard

I was invited to lead the office hours for the Springboard’s Data Analytics for Business course and I wanted to share the recording with you all:

CLICK HERE

I answer following questions during the office hours:

  • What tools have I used in my career for Data Analytics & Data Science?
  • What are the different analysis/modeling that you do?
  • What are the biggest challenges that I found when I got in this Industry?
  • Being data-driven is not binary but it’s a scale — how do you do analyze what is their current level and how do you make a company more data-driven?
  • What is the challenge for newcomers in this industry? And what are the changes coming in next few years?
  • Which tools are widely used today? Which industry uses which tools heavily?
  • How do you verify “what’s next”? How do you verify that your forecast is good enough?

Related Post: $100 Discount Code For Springboard

How do I learn #SQL for #data analysis?

Standard

Step 1:

This is a good starting point: SQL School Table of Contents

OR, this: Learn SQL

Both of these resources were put together by analytics vendor and is targeted towards beginners.

Step 2:

Review this Quora Thread: How do I learn SQL?

Participate in competitions like this: Solve SQL Code Challenges

Step 3:

If you like to go more in-depth then check out few books:

  1. Head First SQL
  2. Learn SQL the hard Way
  3. Certification books/material from a database vendor

Hope that helps!

VIEW QUESTION ON QUORA

[VIDEO] Microsoft’s vision for “Advanced analytics” (presented at #sqlpass summit 2015)

Standard

Presented at #sqlpass summit 2015.

Examples to help you differentiate between Business Intelligence and Data Science problems:

Standard

In this post, I’ll list few examples from various industries to help you differentiate between business intelligence and data science problems.

Sometime back, I blogged about “Business Analytics Continuum” and in the post we saw that Every Organization has DATA but they use their business data at different levels because of their maturity level. Excel (or other transactional reporting tools) is usually the starting point for any organization – it helps them see WHAT happened. They advance to the next stage, where they get capabilities to slice and dice their data – To find out WHY – and usually this capability is delivered using Business Intelligence tools & techniques. Once the data culture spreads – Thanks to a successful Business Intelligence project – then they soon start to outgrow their business intelligence capabilities by asking problems that need predictive capabilities. This is advanced analytics and Data Science stage. To that end, here are 5 examples to help you differentiate between business intelligence and data science problems:

Business Intelligence.(WHAT & WHY) Data Science & advanced analytics.
Bike Rentals
  1. How many bikes did we rent in Q3 2014? How does that compare to Q3 2013?
  2. What is the trend of total bike rentals at week level? Can you break it down by geography?
Can you predict bike rentals on an hourly basis?
Credit Risk
  1. How many customers have a credit risk of ‘C’?
  2. Can you rank customers by their payments due amount that have a credit risk ‘C’?
Can you predict the credit risk of the customer during contract negotiations stage?
Customer relationship management
  1. How many account cancellations occurred this year (broken down by month and customer segmentation)?
  2. How does percentage of account cancellations this year compare to that previous year?
 Can you predict customer churn?
Flight Delays
  1. What is the trend of % of flight delayed this year?
  2. Can you break down flight delays this year by their reasons?
Can you predict whether a scheduled flight will be delayed by more than 15 minutes?
Customer feedback
  1. What is the customer satisfaction % trend this year?
  2. What is the customer satisfaction % broken down by customer segments and product segments?
Can you classify a customer feedback comment into “positive”, “negative” or “neutral”?

I hope this helps!

PASS Business Analytics VC: Insider’s Introduction to Microsoft Azure Machine Learning (#AzureML). #sqlpass

Standard

RSVP: http://bit.ly/PASSBAVC091814


Session Abstract:
Microsoft has introduced a new technology for developing analytics applications in the cloud. The presenter has an insider’s perspective, having actively provided feedback to the Microsoft team which has been developing this technology over the past 2 years. This session will 1) provide an introduction to the Azure technology including licensing, 2) provide demos of using R version 3 with AzureML, and 3) provide best practices for developing applications with Azure Machine Learning.
Speaker BIO:
Mark is a consultant who provides enterprise data science analytics advice and solutions. He uses Microsoft Azure Machine Learning, Microsoft SQL Server Data Mining, SAS, SPSS, R, and Hadoop (among other tools). He works with Microsoft Business Intelligence (SSAS, SSIS, SSRS, SharePoint, Power BI, .NET). He is a SQL Server MVP and has a research doctorate (PhD) from Georgia Tech.

RSVP: http://bit.ly/PASSBAVC091814

Hope to see you there!

Paras Doshi
Business Analytics Virtual Chapter’s Co-Leader

 

Back to basics: Multi Class Classification vs Two class classification.

Standard

Classification algorithms are commonly used to build predictive models. Here’s what they do (simplified!):

Machine Learning Predictive Algorithms analytics Introduction

Now, here’s the difference between Multi Class and Two Class:

if your Test Data needs to be classified into two classes then you use a two-class classification model.

Examples:

1. Is it going to Rain today? YES or NO

2. Will the buyer renew his soon-to-expire subscription? YES or NO

3. What is the sentiment of this text? Positive OR Negative

As you can see from above examples the test data needs to be classified in two classes.

Now, look at example #3 – What is the sentiment of the text? What if you also want an additional class called “neutral” – so now there are three classes and we’ll need to use a multi-class classification model. So, If your test data needs to be classified into more than two classes then you use a multi-class classification model.

Examples:

1. Sentiment analysis of customer reviews? Positive, Negative, Neutral

2. What is the weather prediction for today? Sunny, Cloudy, Rainy, Snow

I hope the examples helped, so next time you have to choose between multi class and two class classification models, ask yourself – does the problem ask you to predict two classes or more? based on that, you’ll need to pick your model.

Example: Azure Machine Learning (AzureML) studio’s classifier list:

Azure Machine Learning classifiers list

I hope this helps!

What is the purpose of creating Tables & Graphs?

Standard

Knowing why we do what we do is important. Stephen Few lists four reason for creating Tables & Graphs in his book “Show me the number”. I really liked them so I am posting it here for your reference:

  1. it helps us communicate. It helps present information to others.
  2. it helps us analyze data. it helps us find the insights in the data.
  3. It helps us Monitor Performance. It helps us keep track information about performance e.g. Sales Performance, Speed of Manufacturing, etc.
  4. It helps us Plan. It helps us predict and prepare for the future.