What are the must-know software skills for a career in data analytics after an MBA?

Standard

SQL, Excel & Tableau-like tools are good enough to start. Then add something like R eventually. And then there are tools that are specific to the industry – example: Google Analytics for the tech industry.

Other than that, you should know what do with these tools. You need to know following concepts and continuously build upon that as the industry use-cases and needs evolve:

  1. Spreadsheet modeling
  2. Forecasting
  3. Customer Segmentation
  4. Root cause Analysis
  5. Data Visualization and Dash-boarding
  6. Customer Lifetime value
  7. A/B testing
  8. Web Analytics

VIEW QUESTION ON QUORA

Is it too late to become a good Data Scientist?

Standard

If you’re looking for career change, that’s never too late!

If you’re looking to learn something new, that’s never too late!

If you’re looking to continue learning and go deeper in data science, that’s never too late!

If you don’t like Software engineering and want to switch to something else, that’s never too late!

But if you are after the “Data Science” gold rush, then you did miss the first wave! You are late.

But seriously, you should apply first-principles thinking to your career strategy and ideally not jump to whatever’s “hot” because by the time you get on that train, it’s usually too late.

VIEW QUESTION ON QUORA

Data analytics vs. Data science vs. Business intelligence: what are the key differences/distinctions?

Standard

They are used interchangeably since all of them involve working with data to find actionable insights. But I like to differentiate them based on the type of the question you’re asking:

  • What:

What are my sales number for this quarter?

What is the profit for this year to date?

What are my sales number over the past 6 months?

What did the sales look like same quarter last year?

All of these questions are used to report on facts and tools that help you build data models and reports can be classified as “Business Intelligence” tools.

  • Why:

Why is my sales number higher for this quarter compared to last quarter?

Why are we seeing increase in sales over the past 6 months?

Why are we seeing decrease in profit over the past 6 months?

Why does the profit this quarter less compared to same quarter last year?

All of these questions try to figure why something happened? A data analyst typically takes a stab at this. He might use existing Business Intelligence platform to pull data and/or also merge other data sets. He/she then applies data analysis techniques on the data to answer the “why” question and help business user get to the actionable insight.

  • What’s next:

What will be my sales forecast for next year?

What will be our profit next year for Scenario A, B & C?

Which customers will cancel/churn next quarter?

Which new customers will convert to a high-value customer?

All of these questions try to “predict” what will happen next (based on historical data/patterns). Sometimes, you don’t know the questions in the first place so there’s a lot of pro-active thinking going on and usually a “data scientist” are doing that. Sometimes you start with a high level business problem and form “hypothesis” to drive your analysis. All of these can be classified under “data science”.

Now, as you can see as we progressed from What -> Why -> What’s next, the level of sophistication needed to do the analysis also increased. So you need a combination of people, process and technology platform in an organization to go from having a Business Intelligence maturity all the way to achieving data science capabilities.

Here’s a related blog post that I wrote on this a while back: Business Analytics Continuum: – Insight Extractor – Blog

Data Science

..And you can check out other stuff I write about here: Insight Extractor – Blog – Paras Doshi’s Blog on Analytics, Data Science & Business Intelligence.

VIEW QUESTION ON QUORA

Cheat Sheet to Pick the right graph or chart for your data:

Standard

I have two resources that I use sometimes to pick the right graph or chart for data visualization.

#1: Chart Suggestions:

chart data

#2: Online Tool

(By Juice Labs)

chart pick choose online tool

What are some of the most important resources a Data analyst needs to know about?

Standard

This question was asked on Quora and here’s my answer:

I will list resources broken down by three categories.

  1. Business Knowledge: As a data analyst, you need to have at least basic knowledge of business areas that you are helping with. For example: if you are doing Marketing Analytics then you need to understand basic concepts in marketing and that will make you more effective. You can do so one of the three ways:
    • On-the-job: Pick up knowledge by interacting with business people and using internal knowledge bases.
    • Online resources: Pick up basics of marketing by taking a beginners course online on a platform like Coursera OR from resources like this: Business Concepts – Bootcamp | PrepLounge.com
    • College/University: If you are at a college/university then you can either audit a course or depending on your major/minor, core business courses might just be part of the curriculum
  2. Communication skills:
    • Public Speaking: Toastmaster’s is a great resource. if you don’t have access to a local Toastmasters club, you should be able to find a course online. Check out Coursera.
    • Data Storytelling: Just listening to someone like Hans Rosling can be very inspiring! The best stats you’ve ever seen . Also, If you search storytelling with data on YouTube, you will see few good talks: storytelling with data – YouTube
    • Problem structuring: If you are able to break down the problem into core components to identify root cause, you will not only increase your speed to insight but your structure will also help you communicate it more effectively. Learn to break down your problems and use that in communicating your data analysis approach. Imagine this list without the three high-level categories — wouldn’t it look like I am throwing random resources at you? By giving it a structure — Tech, Biz, Communication, I am not only able to structure it but also communicate it to you more effectively. More here: Structure your Thoughts – Bootcamp | PrepLounge.com
  3. Tech skills: Read Akash Dugam’s answer: Akash Dugam’s answer to What are some of the most important resources a Data analyst needs to know about? — it’s a nice list. Also, check this out: Learn #Data Analysis online – free curriculum

A great data analyst will focus on all areas and a good data analyst might just focus on tech. Hope that helps!

VIEW QUESTION ON QUORA

Book Giveaway: Head First Data Analysis — Ends 07/22/2016

Standard

<< THIS GIVEAWAY IS CLOSED NOW! Thanks for Participating! >>

Head First Data Analysis

Book Giveaway: Head First Data Analysis — A learner’s guide to big numbers, statistics and good decisions!

I love Head First series — if you haven’t read one of these books, you should — it’s great! So when I learned that they had a Data Analysis one, I had to read it. So I bought one and skimmed through it.

Now, Instead of letting it sit on my shelf, I think it might better serve its life purpose if more people read it so I have decided to do this little experiment.

Rules:

  1. You need to have an US-based address so that I can ship it to you (no cost to you!)
  2. You need to comment on this blog post on or before 07/22/2016 — just put your name & email. I’ll contact you if you win*

*Random selection!

Go!

How to create a Histogram in Excel?

Standard

Histogram is a powerful data analysis technique — it let’s you quickly see the distribution of the data you have. So in this post, I am going to list the steps to create histogram in Excel.

It’s a two-step process.

  1. Install “Data Analysis Tool Pak” (free Excel add-in)
  2. Format the data and build the histogram

Step 1: Install Data Analysis Tool Pak.

One of the most useful data analysis add-in in excel is not available by default! It’s called “Analysis ToolPak”

To activate it. Go to File > Excel options > Addins > For the manage field, select Excel add-ins

Histogram Manage Excel add-insMake sure that ToolPak is activated and click OK.

Histogram analysis toolpak excel(Also, Solver is a great add-in as well! It’s not in the scope of this article to discuss that add-in but it’s a powerful add-in as well. For instance, it let’s you work on optimization problems)

Step 2: Format Data and build the Histogram

So now let’s format the data.

You need two things to create a Histogram. 1) Data 2) Range

Here’s an example: (I have about 3000 numbers and need to see the distribution)

You could have other fields on the sheet as well but you need at least the data field. Range is optional but I recommend that you specify the Range so that your histogram would have the bins that you specified — otherwise you could have just used a bar chart!

Note that both of them are numerical.

Data Histogram

Now go to Menu Bar > Data > Data Analysis

Data Analysis HistogramOut of the options available, click on Histogram and select the Input Range and Bin Range > after you’re done, click OK.

Data Analysis Histogram ToolpakYou should see a new worksheet with raw data (ready for charting!). Now, create a Bar chart using the raw data and you have your histogram:

Histogram Excel Data AnalysisConclusion:

In this post I listed the steps you can take to create a Histogram in Excel. Note that there are other options as well — like R (hist function) that let’s you build histogram as well so you do have choice of tools but if you want to stick with excel and it’s good enough then you now know how. Cheers!

Related Post: What is the difference between Histogram & Bar Chart?