Springboard Data Analytics for Business Office Hours

Standard

I was invited to lead the office hours for the Springboard’s Data Analytics for Business course and I wanted to share the recording with you all:

CLICK HERE

I answer following questions during the office hours:

  • What tools have I used in my career for Data Analytics & Data Science?
  • What are the different analysis/modeling that you do?
  • What are the biggest challenges that I found when I got in this Industry?
  • Being data-driven is not binary but it’s a scale — how do you do analyze what is their current level and how do you make a company more data-driven?
  • What is the challenge for newcomers in this industry? And what are the changes coming in next few years?
  • Which tools are widely used today? Which industry uses which tools heavily?
  • How do you verify “what’s next”? How do you verify that your forecast is good enough?

Related Post: $100 Discount Code For Springboard

Rumsfeld on Analytics:

Standard

I loved the “Donald Rumsfeld on Analytics” framework shared by Avinash Kaushik in his strata talk. Even though the talk was from 5 years back, this is still relevant today! As a data analyst/data science professional, we should strive to automate the fact-checking and reporting as much as we can, so that we can focus on the good stuff: validating (or invalidating) intuition and exploring unknowns!

Rumsfeld on Analytics

And if you like frameworks to structure your thoughts, you might also like the What-why-What’s-Next (4W) framework to test your analytics maturity here — this is important because if your organization is not mature, you might get stuck in data puking (reporting/fact-checking) and never get to the good stuff that Avinash talks about in the framework above. So figure out the analytics maturity of your organization and then take steps to help your organization improve.

-Paras

What are the must-know software skills for a career in data analytics after an MBA?

Standard

SQL, Excel & Tableau-like tools are good enough to start. Then add something like R eventually. And then there are tools that are specific to the industry – example: Google Analytics for the tech industry.

Other than that, you should know what do with these tools. You need to know following concepts and continuously build upon that as the industry use-cases and needs evolve:

  1. Spreadsheet modeling
  2. Forecasting
  3. Customer Segmentation
  4. Root cause Analysis
  5. Data Visualization and Dash-boarding
  6. Customer Lifetime value
  7. A/B testing
  8. Web Analytics

VIEW QUESTION ON QUORA

How do you become a good data analyst?

Standard

This was asked on quora and here’s my reply:

You can become a great data analyst by continuously improving the analytics maturity of the company/start-up that you work for:

[Go to my blog for more context on the picture above]

If you create bunch of reports and help answer what happened— then try to help business users with why it happened. [Example: Instead of just sending website traffic info, add why the traffic spikes (up/downs) are happening]

If you are working on building bunch of models that answer why questions then try to help build predictive models next [Example: You have been working on a model that helped you answer why customers churned. Now built upon that and predict which customers will churn next]

If you do analytics and data science well and are already answering what, why, what’s next questions and you’re killing it! Then figure out how can you help business owners take action. Or make it easier than ever before to take actions on your data/recommendations.


Other answers for questions are directly/indirectly covered if you do this:

  1. You will have to pick the right tool for the job
  2. You will have to continuously keep learning (by taking online courses and/or you-tube)
  3. Don’t just be a data analyst, be a thought partner to business owners and if possible, transition into role that help you own business outcomes.

Hope that helps!

VIEW QUESTION ON QUORA

As a student preparing for data anaylst & science roles, should I generalize vs specialize?

Standard

This question was posted on Springboard forum.

Here’s my answer:

It depends on your target industry & where they are in their life-cycle.

It has four stages: Startup, Growth, Maturity, Decline.

Industry lifecycle

Generalization is great in earlier stages. If you are targeting jobs at startups; generalize. You should know enough about lot of things.

T-shaped professionals are great for Growth stage. They specialize in something but still know enough about lot of things. E.g. Sr Growth/Marketing Analyst. Know enough about analytics & data science to be dangerous but specializes in marketing.

Specialization is great for mature industries. They know a lot about few things. E.g. Statisticians in an Insurance industry. They have made careers out of building risk models.

In how many dimensions (Vs) is Big Data commonly defined?

Standard

Asked on Quora:

When reading about Big Data, this starts with the definition of Gartner’s analyst Doug Laney (3Vs). IBM is often using 4 dimensions by adding veracity. Some people are using 6 or up to 12 dimensions. I am wondering what’s the most frequently used definition?

Answer:

Here’s my “working” definition of Big Data: if your existing 1) Tools & 2) Processes don’t support the data analysis needs then you have a Big Data problem.

You can add as many V’s as you want to but it all ties back to the notion that you need bigger and better tools and processes to support your data analysis needs as you grow.

Example:

#1. Social Media Data is BIG! It’s Text (variety) and much bigger in size (Volume) and it’s all coming in very fast! (velocity) AND business wants to analyze customer sentiments on social: OK — we have 3V’s problem and need a solution to support this. Maybe Hadoop is the answer. Maybe not. But you do have a “Big Data” problem.

#2: Your Customer Database is broken. They don’t right addresses. Google and Alphabet are showing up as two separate companies when they should be just one. Their employee count is outdated and All of these problems is confusing your business user and they don’t TRUST the data anymore. You have a veracity problem and so you have a BIG Data problem.

Everyone has a BIG DATA problem. It just depends what there “v’s” are AND it most cases “tools” alone will not solve the issue. You need PEOPLE and PROCESS to solve that. Here’s my ranking: 1) PEOPLE 2) PROCESS 3) PLATFORM (tools) for ingredients that are key to solving BIG Data problems.

VIEW QUESTION ON QUORA

How do I learn #SQL for #data analysis?

Standard

Step 1:

This is a good starting point: SQL School Table of Contents

OR, this: Learn SQL

Both of these resources were put together by analytics vendor and is targeted towards beginners.

Step 2:

Review this Quora Thread: How do I learn SQL?

Participate in competitions like this: Solve SQL Code Challenges

Step 3:

If you like to go more in-depth then check out few books:

  1. Head First SQL
  2. Learn SQL the hard Way
  3. Certification books/material from a database vendor

Hope that helps!

VIEW QUESTION ON QUORA