Any advice for moving into data science from business intelligence?

Standard

This was asked on Reddit: Any advice for moving into data science from business intelligence?

Here’s my answer:

I come from “Business Intelligence” background and currently work as Sr. Data Scientist. I found that you need two things to transition into data science:

Data Culture: A company where the data culture is such that managers/executives ask big questions that need a data science approach to solve it. If your end-consumers are still asking bunch of “what” questions then your company might NOT be ready for data science. But if your CEO comes to you and says “hey, I got the customer list with the info I asked for but can you help me understand which of these customers might churn next quarter?” — then you have a data science problem at hand. So, try to find companies that have this culture.

Skills: And you need to upgrade your skills to be able to solve data science problems. BI is focused too much on technology and automation and so may need to unlearn few things. For example: Automation is not always important since you might work on problems where a model is needed to predict just a couple of times. Trying to automate wouldn’t be optimal in that case. Also, BI relies heavily on tools but in Data science, you’ll need deeper domain knowledge & problem-solving approach along with technical skills.

Also, I personally moved from BI (as a consultant) -> Analytics (as Analytics Manager) -> Data science (Sr Data Scientist) and this has been super helpful for me. I recommend to transition into Analytics first and then eventually breaking into data science.

Hope that helps!

VIEW THREAD ON REDDIT

In how many dimensions (Vs) is Big Data commonly defined?

Standard

Asked on Quora:

When reading about Big Data, this starts with the definition of Gartner’s analyst Doug Laney (3Vs). IBM is often using 4 dimensions by adding veracity. Some people are using 6 or up to 12 dimensions. I am wondering what’s the most frequently used definition?

Answer:

Here’s my “working” definition of Big Data: if your existing 1) Tools & 2) Processes don’t support the data analysis needs then you have a Big Data problem.

You can add as many V’s as you want to but it all ties back to the notion that you need bigger and better tools and processes to support your data analysis needs as you grow.

Example:

#1. Social Media Data is BIG! It’s Text (variety) and much bigger in size (Volume) and it’s all coming in very fast! (velocity) AND business wants to analyze customer sentiments on social: OK — we have 3V’s problem and need a solution to support this. Maybe Hadoop is the answer. Maybe not. But you do have a “Big Data” problem.

#2: Your Customer Database is broken. They don’t right addresses. Google and Alphabet are showing up as two separate companies when they should be just one. Their employee count is outdated and All of these problems is confusing your business user and they don’t TRUST the data anymore. You have a veracity problem and so you have a BIG Data problem.

Everyone has a BIG DATA problem. It just depends what there “v’s” are AND it most cases “tools” alone will not solve the issue. You need PEOPLE and PROCESS to solve that. Here’s my ranking: 1) PEOPLE 2) PROCESS 3) PLATFORM (tools) for ingredients that are key to solving BIG Data problems.

VIEW QUESTION ON QUORA

How do I learn #SQL for #data analysis?

Standard

Step 1:

This is a good starting point: SQL School Table of Contents

OR, this: Learn SQL

Both of these resources were put together by analytics vendor and is targeted towards beginners.

Step 2:

Review this Quora Thread: How do I learn SQL?

Participate in competitions like this: Solve SQL Code Challenges

Step 3:

If you like to go more in-depth then check out few books:

  1. Head First SQL
  2. Learn SQL the hard Way
  3. Certification books/material from a database vendor

Hope that helps!

VIEW QUESTION ON QUORA