Examples to help you differentiate between Business Intelligence and Data Science problems:

Standard

In this post, I’ll list few examples from various industries to help you differentiate between business intelligence and data science problems.

Sometime back, I blogged about “Business Analytics Continuum” and in the post we saw that Every Organization has DATA but they use their business data at different levels because of their maturity level. Excel (or other transactional reporting tools) is usually the starting point for any organization – it helps them see WHAT happened. They advance to the next stage, where they get capabilities to slice and dice their data – To find out WHY – and usually this capability is delivered using Business Intelligence tools & techniques. Once the data culture spreads – Thanks to a successful Business Intelligence project – then they soon start to outgrow their business intelligence capabilities by asking problems that need predictive capabilities. This is advanced analytics and Data Science stage. To that end, here are 5 examples to help you differentiate between business intelligence and data science problems:

Business Intelligence.(WHAT & WHY) Data Science & advanced analytics.
Bike Rentals
  1. How many bikes did we rent in Q3 2014? How does that compare to Q3 2013?
  2. What is the trend of total bike rentals at week level? Can you break it down by geography?
Can you predict bike rentals on an hourly basis?
Credit Risk
  1. How many customers have a credit risk of ‘C’?
  2. Can you rank customers by their payments due amount that have a credit risk ‘C’?
Can you predict the credit risk of the customer during contract negotiations stage?
Customer relationship management
  1. How many account cancellations occurred this year (broken down by month and customer segmentation)?
  2. How does percentage of account cancellations this year compare to that previous year?
 Can you predict customer churn?
Flight Delays
  1. What is the trend of % of flight delayed this year?
  2. Can you break down flight delays this year by their reasons?
Can you predict whether a scheduled flight will be delayed by more than 15 minutes?
Customer feedback
  1. What is the customer satisfaction % trend this year?
  2. What is the customer satisfaction % broken down by customer segments and product segments?
Can you classify a customer feedback comment into “positive”, “negative” or “neutral”?

I hope this helps!

4 thoughts on “Examples to help you differentiate between Business Intelligence and Data Science problems:

What do you think? Leave a comment below.